4,960 research outputs found

    Assessing the joint effect of population stratification and sample selection in studies of gene-gene (environment) interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that the presence of population stratification (PS) may cause the usual test in case-control studies to produce spurious gene-disease associations. However, the impact of the PS and sample selection (SS) is less known. In this paper, we provide a systematic study of the joint effect of PS and SS under a more general risk model containing genetic and environmental factors. We provide simulation results to show the magnitude of the bias and its impact on type I error rate of the usual chi-square test under a wide range of PS level and selection bias.</p> <p>Results</p> <p>The biases to the estimation of main and interaction effect are quantified and then their bounds derived. The estimated bounds can be used to compute conservative p-values for the association test. If the conservative p-value is smaller than the significance level, we can safely claim that the association test is significant regardless of the presence of PS or not, or if there is any selection bias. We also identify conditions for the null bias. The bias depends on the allele frequencies, exposure rates, gene-environment odds ratios and disease risks across subpopulations and the sampling of the cases and controls.</p> <p>Conclusion</p> <p>Our results show that the bias cannot be ignored even the case and control data were matched in ethnicity. A real example is given to illustrate application of the conservative p-value. These results are useful to the genetic association studies of main and interaction effects.</p

    Protective efficacy against pandemic influenza of seasonal influenza vaccination in children in Hong Kong: a randomized controlled trial

    Get PDF
    BACKGROUND: The efficacy of seasonal influenza vaccination against 2009 pandemic influenza A(H1N1) remains unclear. METHODS: One child aged 6-17 years in each of 796 households was randomized to receive 2009-2010 seasonal trivalent inactivated influenza vaccine (TIV) or saline placebo between August 2009 and February 2010. Households were followed up with serology, symptom diaries, and collection of respiratory specimens during illnesses. The primary outcomes were influenza infection confirmed by reverse-transcription polymerase chain reaction (RT-PCR) or a >/=4-fold rise in serum antibody titer measured by hemagglutination inhibition assay. RESULTS: Receipt of TIV led to 8-13-fold mean geometric rises in antibody titers against seasonal A and B viruses, but only 1.5-fold mean geometric rises against the pandemic A(H1N1) virus that was not included in the vaccine. Children who received TIV had a reduced risk of seasonal influenza B confirmed by RT-PCR, with a vaccine efficacy estimate of 66% (95% confidence interval [CI], 31%-83%). Children who received TIV also a had reduced risk of pandemic influenza A(H1N1) indicated by serology, with a vaccine efficacy estimate of 47% (95% CI, 15%-67%). CONCLUSIONS: Seasonal TIV prevented pandemic influenza A(H1N1) and influenza B infections in children. Pandemic A(H1N1) circulated at the time of vaccination and for a short time afterward with no substantial seasonal influenza activity during that period. The potential mechanism for seasonal TIV to provide protection, possibly short lived, for children against pandemic A(H1N1) infection despite poor cross-reactive serologic response deserves further investigation. Clinical Trials Registration. NCT00792051.postprin

    A novel psittacine adenovirus identified during an outbreak of avian chlamydiosis and human psittacosis: zoonosis associated with virus-bacterium coinfection in birds

    Get PDF
    Chlamydophila psittaci is found worldwide, but is particularly common among psittacine birds in tropical and subtropical regions. While investigating a human psittacosis outbreak that was associated with avian chlamydiosis in Hong Kong, we identified a novel adenovirus in epidemiologically linked Mealy Parrots, which was not present in healthy birds unrelated to the outbreak or in other animals. The novel adenovirus (tentatively named Psittacine adenovirus HKU1) was most closely related to Duck adenovirus A in the Atadenovirus genus. Sequencing showed that the Psittacine adenovirus HKU1 genome consists of 31,735 nucleotides. Comparative genome analysis showed that the Psittacine adenovirus HKU1 genome contains 23 open reading frames (ORFs) with sequence similarity to known adenoviral genes, and six additional ORFs at the 3′ end of the genome. Similar to Duck adenovirus A, the novel adenovirus lacks LH1, LH2 and LH3, which distinguishes it from other viruses in the Atadenovirus genus. Notably, fiber-2 protein, which is present in Aviadenovirus but not Atadenovirus, is also present in Psittacine adenovirus HKU1. Psittacine adenovirus HKU1 had pairwise amino acid sequence identities of 50.3–54.0% for the DNA polymerase, 64.6–70.7% for the penton protein, and 66.1–74.0% for the hexon protein with other Atadenovirus. The C. psittaci bacterial load was positively correlated with adenovirus viral load in the lung. Immunostaining for fiber protein expression was positive in lung and liver tissue cells of affected parrots, confirming active viral replication. No other viruses were found. This is the first documentation of an adenovirus-C. psittaci co-infection in an avian species that was associated with a human outbreak of psittacosis. Viral-bacterial co-infection often increases disease severity in both humans and animals. The role of viral-bacterial co-infection in animal-to-human transmission of infectious agents has not received sufficient attention and should be emphasized in the investigation of disease outbreaks in human and animals. © 2014 To et al.published_or_final_versio

    Lead Increases Lipopolysaccharide-Induced Liver Injury through Tumor Necrosis Factor-α Overexpression by Monocytes/Macrophages: Role of Protein Kinase C and p42/44 Mitogen-Activated Protein Kinase

    Get PDF
    Although lead and lipopolysaccharide (LPS), both important environmental pollutants, activate cells through different receptors and participate in distinct upstream signaling pathways, Pb increases the amount of LPS-induced tumor necrosis factor-α (TNF-α). We examined the cells responsible for the excess production of Pb-increased LPS-induced TNF-α and liver injury, and the roles of protein kinase C (PKC) and p42/44 mitogen-activated protein kinase (MAPK) in the induction of TNF-α. Peritoneal injection of Pb alone (100 μmol/kg) or a low dose of LPS (5 mg/kg) did not affect serum TNF-α or liver functions in A/J mice. In contrast, coexposure to these noneffective doses of Pb plus LPS (Pb+LPS) strongly induced TNF-α expression and resulted in profound liver injury. Direct inhibition of TNF-α or functional inactivation of monocytes/macrophages significantly decreased the level of Pb+LPS-induced serum TNF-α and concurrently ameliorated liver injury. Pb+LPS coexposure stimulated the phosphorylation of p42/44 MAPK and the expression of TNF-α in CD14(+) cells of cultured mouse whole blood, peritoneal macrophages, and RAW264.7 cells. Moreover, blocking PKC or MAPK effectively reduced Pb+LPS-induced TNF-α expression and liver injury. In summary, monocytes/macrophages were the cells primarily responsible for producing, through the PKC/MAPK pathway, the excess Pb-increased/LPS-induced TNF-α that caused liver injury

    Monoclonal antibodies and Fc-fusion protein biologic medicines: A multinational cross-sectional investigation of accessibility and affordability in Asia Pacific regions between 2010 and 2020

    Get PDF
    Background: Monoclonal antibody (mAb) and Fc-fusion protein (FcP) are highly effective therapeutic biologics. We aimed to analyse consumption and expenditure trends in 14 Asia-Pacific countries/regions (APAC) and three benchmark countries (the UK, Canada, and the US). Methods: We analysed 440 mAb and FcP biological products using the IQVIA-MIDAS global sales database. For each year between 2010 and 2020 inclusive, we used standard units (SU) sold per 1000 population and manufacture level price (standardised in 2019 US dollars) to evaluate consumption (accessibility) and expenditure (affordability). Changes of consumption and expenditure were estimated using compound annual growth rate (CAGR). Correlations between consumption, country's economic and health performance indicators were measured using Spearman correlation coefficient. Findings: Between 2010 and 2020, CAGRs of consumption in each region ranged from 7% to 34% and the CAGRs of expenditure ranged from 9% to 31%. The median consumption of biologics was extremely low in lower-middle-income economies (0·29 SU/1000 population) compared with upper-middle-income economies (1·20), high-income economies (40·94) and benchmark countries (109·55), although the median CAGRs of biologics consumption in lower-middle-income economies (31%) was greater than upper-middle-income (14%), high-income economies (13%) and benchmark countries (9%). Consumption was correlated with GDP per capita [Spearman's rank correlation coefficient (r) = 0·75, p < 0·001], health expenditure as a percentage of total (r = 0·83, p < 0·001) and medical doctors’ density (r = 0·85, p < 0·001). Interpretation: There have been significant increases in mAb and FcP biologics consumption and expenditure, however accessibility of biological medicines remains unequal and is largely correlated with country's income level. Funding: This research was funded by NHMRC Project Grant GNT1157506 and GNT1196900; Enhanced Start-up Fund for new academic staff and Internal Research Fund, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong
    corecore